Nonnegativity Constraints in Numerical Analysis

نویسندگان

  • Donghui Chen
  • Robert J. Plemmons
چکیده

A survey of the development of algorithms for enforcing nonnegativity constraints in scientific computation is given. Special emphasis is placed on such constraints in least squares computations in numerical linear algebra and in nonlinear optimization. Techniques involving nonnegative low-rank matrix and tensor factorizations are also emphasized. Details are provided for some important classical and modern applications in science and engineering. For completeness, this report also includes an effort toward a literature survey of the various algorithms and applications of nonnegativity constraints in numerical analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonstandard explicit third-order Runge-Kutta method with positivity property

When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...

متن کامل

Regularizing active set method for nonnegatively constrained ill-posed multichannel image restoration problem.

In this paper, we consider the nonnegatively constrained multichannel image deblurring problem and propose regularizing active set methods for numerical restoration. For image deblurring problems, it is reasonable to solve a regularizing model with nonnegativity constraints because of the physical meaning of the image. We consider a general regularizing l(p)-l(q) model with nonnegativity constr...

متن کامل

Nonnegative matrix factorization with quadratic programming

Nonnegative Matrix Factorization (NMF) solves the following problem: find such nonnegative matrices A ∈ RI×J + and X ∈ RJ×K + that Y ∼= AX, given only Y ∈ RI×K and the assigned index J (K >> I ≥ J). Basically, the factorization is achieved by alternating minimization of a given cost function subject to nonnegativity constraints. In the paper, we propose to use Quadratic Programming (QP) to solv...

متن کامل

Performance analysis of maximum likelihood methods for regularization problems with nonnegativity constraints

In many numerical applications, for instance in image deconvolution, the nonnegativity of the computed solution is required. When a problem of deconvolution is formulated in a statistical frame, the recorded image is seen as the realization of a random process, where the nature of the noise is taken into account. This formulation leads to the maximization of a likelihood function which depends ...

متن کامل

An MCMC Method for Uncertainty Quantification in Nonnegativity Constrained Inverse Problems

The development of computational algorithms for solving inverse problems is, and has been, a primary focus of the inverse problems community. Less studied, but of increased interest, is uncertainty quantification for solutions of inverse problems obtained using computational methods. In this paper, we present a method of uncertainty quantification for linear inverse problems with nonnegativity ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007